Astronomically tuned geomagnetic polarity timescale for the Late Triassic

نویسنده

  • E. Olsen
چکیده

Cycle stratigraphic and magnetostratigraphic analyses of a -5000-m-thick composite section obtained by scientific oring in the Newark rift basin of eastern North America provide a high-resolution astronomically calibrated geomagnetic polarity timescale (GPTS) spanning over 30 m.y. of the Late Triassic and earliest Jurassic. Only normal polarity is found in -1000 m of interbedded volcanics and continental sediments of earliest Jurassic age but a total of 59 normal and reverse polarity magnetozones are delineated in the underlying 4000+ m of Late Triassic continental sediments. Lithologic facies response to climatically induced lake level variation provides a full spectrum of Milankovitch cyclicity; the prominent 404 kyr orbital eccentricity climate cycle has a mean thickness of about 60 m and is the basis for scaling most of the stratigraphic section in time. When indexed to available radioisotopic dating, the resulting astronomically calibrated GPTS spans from the 202 Ma Triassic/Jurassic boundary to 233 Ma. Results of detailed sampling profiles across 42 magnetozone boundaries representing 35 different polarity reversals indicate transition durations that average 7.9 kyr, comparable to the estimated duration of recent polarity reversals. The polarity intervals have a mean duration of 0.53 m.y. with a corresponding reversal rate of 1.88 m.y. -1 and no significant polarity bias and are closely approximated by an exponential distribution with a gamma index k indistinguishable from 1. The longest polarity interval is about 2 m.y., and the shortest is about 0.02 m.y. The overall statistical properties indicate that the behavior of the geomagnetic field in the Late Triassic was not very different from that in the Cenozoic. This geomagnetic polarity record of the Late Triassic provides a well-dated chronostratigraphic framework suitable for detailed global correlation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Astronomically tuned geomagnetic polarity timescale for the

Cycle stratigraphic and magnetostratigraphic analyses of a -5000-m-thick composite section obtained by scientific coring in the Newark rift basin of eastern North America provide a high-resolution astronomically calibrated geomagnetic polarity timescale (GPTS) spanning over 30 m.y. of the Late Triassic and earliest Jurassic. Only normal polarity is found in -1000 m of interbedded volcanics and ...

متن کامل

Current perspectives on the Permian–Triassic boundary and end-Permian mass extinction: Preface

The end-Permian mass extinction is now robustly dated at 252.6 ± 0.2 Ma (U–Pb) and the Permian–Triassic (P–T) GSSP level is dated by interpolation at 252.5 Ma. An isotopic geochronological timescale for the Late Permian–Early Triassic, based on recent accurate high-precision U–Pb single zircon dating of volcanic ashes, together with calibrated conodont zonation schemes, is presented. The durati...

متن کامل

Orbital tuning of geomagnetic polarity time-scales

Milankovitch climate cyclicity and magnetic polarity stratigraphy are being successfully combined as a powerful geochronometer in the astronomical polarity timescale (APTS). The APTS for 0–5.23 Ma has been rapidly accepted as the definitive chronology for the Pliocene and Pleistocene against which even high precision radiometric dating is now calibrated. Extensions of astronomical calibration t...

متن کامل

Astronomical tunings of the Oligocene–Miocene transition from Pacific Ocean Site U1334 and implications for the carbon cycle

Astronomical tuning of sediment sequences requires both unambiguous cycle pattern recognition in climate proxy records and astronomical solutions, as well as independent information about the phase relationship between these two. Here we present two different astronomically tuned age models for the Oligocene–Miocene transition (OMT) from Integrated Ocean Drilling Program Site U1334 (equatorial ...

متن کامل

Deep-tow magnetic anomaly study of the Pacific Jurassic Quiet Zone and implications for the geomagnetic polarity reversal timescale and geomagnetic field behavior

[1] The Jurassic Quiet Zone (JQZ) is a region of low-amplitude magnetic anomalies whose distinctive character may be related to geomagnetic field behavior. We collected deep-tow magnetic profiles in Pigafetta Basin (western Pacific) where previous deep-tow data partially covered the JQZ sequence. Our goals were to extend the survey through the JQZ, examine anomaly correlations, and refine a pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999